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Software-based systems have become the dominant player in the computer systems world.
Since it is imperative that computer systems operate reliably, considering the criticality of
software, reliability is a critical property, particularly in safety critical systems. Software and
hardware do not operate in a vacuum. Therefore, both software and hardware are addressed
in this tutorial in an integrated fashion. The narrative of the tutorial is augmented with
illustrative solved problems.

It is important for an organization to have a disciplined process if it is to produce high
reliability software. This process uses a life cycle approach to software reliability that takes
into account the risk to reliability due to requirements changes. A requirements change may
induce ambiguity and uncertainty in the development process that cause errors in imple-
menting the changes. Subsequently, these errors may propagate through later phases of
development and maintenance. In view of the life cycle ramifications of the software relia-
bility process, maintenance is included in this tutorial. Furthermore, because reliability and
maintainability determine availability, the latter is also included.

I. Introduction

COMPUTER systems, whether hardware or software, are subject to failure. Precisely, what is a failure? It is
defined as: The inability of a system or system component to perform a required function within specified limits.

A failure may be produced when a fault is encountered and a loss of the expected service to the user results [1]. This
brings us to the question of what is a fault? A fault is defect in the hardware or computer code that can be the cause of
one or more failures [1]. Software-based systems have become the dominant player in the computer systems world.
Since it is imperative that computer systems operate reliably, considering the criticality of software, particularly in
safety critical systems. Software and hardware do not operate in a vacuum. Therefore, both software and hardware
are addressed in this tutorial in an integrated fashion. The narrative of the tutorial is augmented with illustrative
solved problems.

It is important for an organization to have a disciplined process if it is to produce high reliability software.
This process uses a life-cycle approach to software reliability that takes into account the risk to reliability due to
requirements changes. A requirements change may induce ambiguity and uncertainty in the development process
that cause errors in implementing the changes. Subsequently, these errors may propagate through later phases
of development and maintenance [2]. In view of the life-cycle ramifications of the software reliability process,
maintenance is included in this tutorial. Furthermore, because reliability and maintainability determine availability,
the latter is also included.
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II. Reliability Basics
To set the stage for discussing software and hardware model, the following definitions and concepts are provided:
1) Component: any hardware or software entity, such as a module, subsystem, or system
2) t : operating time
3) P(T � t): probability that operating time T of a component is at most t (also known as cumulative distribution

function)
4) λ : failure rate (software or hardware failure rate)
5) Reliability R(t) : P(T > t): probability of software or hardware surviving for T > t = 1 − P(T � t) [3]
6) Hazard function: Letting operating time t have the probability density function p(t), the instantaneous failure

rate at time t , is defined as follows

h(t) = p(t)/R(t) [3] (1)

where p(t) is defined as the probability that a failure will occur in the interval (t, t + 1).
The hazard function is frequently described in reliability literature, but a reliability metric that is more practical for

calculations with empirical data is the failure rate f (t). This is defined as the number of failures n(t) in the interval t

divided by t : f (t) = n(t)/t . The reason the hazard function may be impractical, when dealing with empirical data,
is that the probability density function p(t) may not be known.

III. Hardware Reliability
The exponential failure distribution with constant failure rate is particularly applicable to hardware reliability

because it is assumed that the failure rate remains constant after the initial burn in period and before wear out occurs.

Exponential Failure Distribution (λe−λt ):
This distribution has a constant failure rate λ. The exponential distribution is the only failure distribution that has

a constant failure rate λ and a constant hazard function h(t) in the operations phase of the life cycle. This failure rate
is equal to 1/t̄ , where t̄ is the mean time to failure (MTTF).

Then, the reliability is given by

R(t) = e−λt (2)

Then using Eq. (1), the hazard function for exponentially distributed failures is given by

h(t) = p(t)/R(t) = λe−λt/e−λt = λ. (3)

Then adapting Eq. (2) to use MTTF, Eq. (4) is produced as follows:

R(t) = e−(t/t̄) (4)

If we wish to solve for t for a given value of R(t), Eq. (4) is solved for t as follows:

t = −ln(R(t))t̄ (5)

Problem (Specifications):
1) Hardware in a computer system should have an expected (mean) life t̄ > 100000 h (MTTF) at a reliability

of R(t) = 0.85. What is the minimum number of hours t the computer system would have to survive to meet
these specifications?

2) If the hardware should have a 0.85 probability of surviving (i.e., reliability) for t > 50000 h, what is the
MTTF required to meet these specifications?

Solution:
1) Use Eq. (5) to compute t as follows:

t = − ln(0.85)(100000) = −(−0.1625)(100000) = 16250 h

2) Solve Eq. (5) for t̄ as follows:

t = t/[−ln(R(t))] = 50000/[− ln(0.85)] = 307692 h
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Fig. 1 Parallel and serial reliability configurations.

IV. Multiple Component Reliability Analysis
Since the majority of computer systems in industry employ multiple components, the reliability analysis must be

focused on predicting reliability for these systems. Hardware (and software) components can be operated in serial or
hardware configurations. In hardware, the differences are more obvious because of the physical connection between
components. In software, the difference is not obvious because there is no physical connection. The difference is
based on how the components execute, as indicated in Fig. 1.

A. Parallel System
As Fig. 1 shows, the purpose of a parallel system is to provide a redundant configuration so that if one component

fails, another component can take its place, thus increasing reliability. The reliability of a single component i,
operating for a time t , is designated by Ri(t). The unreliability is then (1 − Ri(t)).

Referring to Fig. 1, the reliability of n components operating in parallel is given by

R(t) = 1 −
n∏

i=1

(1 − Ri(t)) [4] (6)

This equation is obtained by observing that the unreliability of n components in parallel is computed by the product
of the individual component unreliabilities. Then, the reliability of n components is obtained by subtracting this
product from “1”.
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The most common parallel configuration involves using two components, so using Eq. (6) and some algebraic
manipulation, the reliability of two components operating in parallel is given by

R(t) = [R1(t) + R2(t)] − [R1(t)R2(t)] = 1 − [(1 − R1(t))(1 − R2(t))] (7)

If both components have the same reliability, then

R(t) = 2R(t) − R2(t) (8)

A traditional assumption in reliability is that the time between failures is exponentially distributed [3]. This is based
on the idea that there is a higher probability of small times between failures and a low probability of large times
between failures. Therefore, when failures are exponentially distributed with failure rate λ, then the reliability in
Eq. (8) becomes as follows:

R(t) = 2e−λt − e−2λt (9)

MTTF refers to the average time to the next failure [4]. It is a common metric for hardware reliability because the
physics of failures is well understood. However, it can be misleading because equipment will fail at specific times
and not according to a mean value! MTTF is even less applicable for software because the distribution of time when
software fails can be erratic. Before proceeding further, it is important to note that just because the distribution of
failure times for both hardware and software is a better metric of reliability, does not mean that MTTF and mean time
between failure (MTBF) (see below) are not used! These metrics have become so embedded in the lore of reliability
that it is imperative to describe their usage.

In the case of hardware, MTTF is used when components are not repaired (i.e., replaced). In other words, with
no repair, the time to next failure is direct, with no intervening repair time. In nonredundant software systems, the
software must be repaired to continue operation, unless the fault causing the failure is trivial. Therefore, MTTF is
not completely applicable for this type of software. On the other hand, for redundant software systems (e.g., fault
tolerant), MTTF is applicable, with the caveat noted above.

MTBF, defined as the average time between failures, is used when components are repaired [4]. Thus, it is the
time between failures, with an intervening repair time.

The general form for MTTF, whether hardware or software, is derived from the reliability function R(t), as
follows: ∫ ∞

0
R(t) dt [3].

Therefore, the MTTF for the two component parallel arrangement, from Eq. (9), is given by

t̄ =
∫ ∞

0
R(t) dt =

∫ ∞

0
(2e−λt − e−2λt ) dt =

[−2e−λt

λ

]∞

0

−
[−e−2λt

2λ

]∞

0

= 1.5

λ
(10)

B. Series System
Often, particularly for software systems, in order to produce a conservative prediction of reliability, components

are assumed to operate in series for the purpose of reliability prediction [5]. This represents the weakest link in the
chain concept (i.e., the system would fail if any component fails).

Then, this conservative reliability approach of n components operating in series is given by

R(t) =
n∏

i=1

Ri(t) [4] (11)

Using Eq. (11), the reliability of two components operating in series, with equal reliabilities, is given by Eq. (12), if
the failures are exponentially distributed as follows:

R(t) = R2(t) = e−2λt (12)
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Then, the MTTF for the series arrangement is given by

t̄ =
∫ ∞

0
R(t) dt =

∫ ∞

0
e−2λt = −[e2λt ]∞0

2λ
= 1

2λ
(13)

It is often of interest to predict the improvement that can be achieved by using a parallel rater that a series configuration.
Then, using Eqs. (9) and (12), the improvement of the parallel system reliability over a series system, for two
components, can be shown as follows:

RI = (2e−λt − e−2λt ) − e−2λt = 2(e−λt − e−2λt ) (14)

In addition, using Eqs. (10) and (13), the increase in mean time to failure can be shown to be

1.5

λ
− 1

2λ
= 1

λ
(15)

It is not only the improvement RI that is of interest. In addition, the rate of change of RI will reveal the rate of change
of RI that will indicate how fast the improvement will occur. Then, differentiating RI (Eq. (14)) with respect to t ,
and setting it equal to 0, gives us Eq. (16) as follows:

d(RI)

d(t)
= 2(−λ)e−λt − 2(−2λ)e−2λt = 0 (16)

Noting that the derivative of Eq. (16) is negative, because the first negative term decreases less rapidly that the second
positive term, we know that Eq. (16) will provide a value of t that will maximize RI.

Then solving Eq. (16) for t , yields t∗ as the value of t that maximizes RI as follows:

t∗ = −(1/λ)(log(0.5)) (17)

Problem:
For a computer system with failure rate of λ = 0.001 failures per hour and time to failure listed below, plot

Eqs. (9), (12), and (14) on the same graph, vs t , and indicate the value of t = t∗ that maximizes RI, assuming an
exponential distribution of time to failure t .

t (h)

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1400
1500
1600
1700
1800
1900
2000
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Fig. 2 Reliability R(t) vs operating time t.

Solution:
Figure 2 contrasts parallel reliability, serial reliability, and the improvement of parallel over serial reliability. The

figure also delineates the operating time where the greatest improvement is achieved. A reliability analyst, using this
plot, would understand that at t = 683 h the greatest gain in reliability would occur and that at operating times either
below or above this value, the gain falls off rapidly.

C. Number of Components that are Needed to Achieve Reliability Goals
When the reliability of a system is required to be Rn(t) in a parallel configuration, the required number n

components, each with a reliability of R(t) equal to

Rn(t) = 1 − (1 − R(t))n (18)

Solving Eq. (18) for n yields

n = ln(1 − Rn(t))

ln(1 − R(t))
(19)

Problem:
How many components are needed to operate in parallel, if each component has a reliability of R(t) = 0.80, and

it is desired to achieve a system reliability of Rn(t) = 0.98.

Solution:
Solving Eq. (18) for n yields

n = ln(1 − Rn(t))

ln(1 − R(t))
= ln(0.02)

ln(0.20)
= −3.912

−1.609
= 2.43 components = 3
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V. Computer System Maintenance and Availability
Preventive maintenance strategy: Routine inspection and service activities designed to detect potential failure

conditions and make adjustments and repairs that will help prevent major operating problems [6].
Two fundamental preventive strategies are differentiated, time- and condition-based preventive maintenance. In

time-based preventive maintenance, after a fixed period of time, a component is serviced or overhauled, independent
of the wear of the component at that moment. In condition-based preventive maintenance, one inspects a condition of
a component, according to some schedule. If the condition exceeds a specified critical value, preventive maintenance
is performed. With regard to the timing of the inspections, there are two variants, constant- and condition-based
inspection interval. If one applies a constant inspection interval, an inspection is performed after a fixed period
of time, analogous to time-based preventive maintenance. When deciding to perform a condition-based inspection
interval, the time until the next inspection depends on the condition in the previous inspection. If the condition in the
previous inspection was good, the time until the next inspection will be quite long. If the condition in the previous
inspection was bad, the time until the next inspection will be quite short.

Predictive maintenance strategy: Predictive maintenance is a condition-based approach to maintenance. The
approach is based on predicting component condition in order to assess whether components will fail during some
future period, and then taking action to avoid the consequences of the failures.

VI. Component Availability
Now, in order to compute component availability, a number of quantities must be defined as follows:
1) tp is the duration of component preventive maintenance

2) to is the duration of component operation

3) tf is the duration of component failure

4) tr is the duration of component repair

5) fp is the frequency of component preventive maintenance

6) fo is the frequency of component operation

7) ff is the frequency of component failures

8) fr is the frequency of component repair

9) t̄ is the mean time to component failure
With the definitions in hand, availability A, can be computed as follows:

A = f0t0

f0t0 + fptp + ff tf + fr tr
(20)

Availability is also expressed by

A = t̄

t̄ + tr
(21)

These quantities are portrayed graphically in Fig. 3.

Problem:
Given the data below for a system, compute the availability A.

Duration of operation: to = 10
Duration of preventive maintenance: tp = 1
Duration of failure: tf = 0.5
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Fig. 3 Computer maintenance process.

Duration of repair: tr = 2
Frequency of operation: fo = 20
Frequency of preventive maintenance: fp = 20 (for every operation there is preventive maintenance)
Frequency of failure: ff = 4
Frequency of repair: fr = 4 (for every failure there is a repair)

Then, using Eq. (20) we have

A = f0t0

f0t0 + fptp + ff tf + fr tr
= (20)(10)

(20)(10) + (20)(1) + (4)(0.5) + (4)(2)
= 0.870 (system availability)

VII. Software Reliability Engineering Risk Analysis
Software reliability engineering (SRE) is an established discipline that can help organizations improve the relia-

bility of their products and processes. The IEEE/AIAA defines SRE as “the application of statistical techniques to
data collected during system development and operation to specify, predict, estimate, and assess the reliability of
software-based systems.” The IEEE/AIAA recommended practice is a composite of models and tools and describes
the “what and how” of SRE [1]. It is important for an organization to have a disciplined process if it is to produce high
reliability software. The process includes a life-cycle approach to SRE that takes into account the risk to reliability
due to requirements changes. A requirements change may induce ambiguity and uncertainty in the development pro-
cess that cause errors in implementing the changes. Subsequently, these errors may propagate through later phases
of development and maintenance. These errors may result in significant risks associated with implementing the
requirements. For example, reliability risk (i.e., risk of faults and failures induced by changes in requirements) may
be incurred by deficiencies in the process (e.g., lack of precision in requirements). Figure 4 shows the overall SRE
closed-loop holistic process.

In the figure, risk factors are metrics that indicate the degree of risk in introducing a new requirement or making a
requirements change. For example, in the NASA Space Shuttle, program size and complexity, number of conflicting
requirements, and memory requirements have been shown to be significantly related to reliability (i.e., increases in
these risk factors are associated with decreases in reliability) [7]. Organizations should conduct studies to determine
what factors are contributing to reliability degradation. Then, as in Fig. 4, organizations could use feedback from
operations, testing, design, and programming, to determine which risk factors are associated with reliability, and revise
requirements, if necessary. For example, if requirements risk assessment finds that through risk factor analysis, that
defects are occurring because of excessive program size, design, and programming would receive revised requirements
to modularize the software.

A reliability risk assessment should be based on the risk to reliability due to software defects or errors caused by
requirements and requirements changes. The method to ascertain risk based on the number of requirements and the
impact of changes to requirements is inexact, but nevertheless, it necessary for early requirements assessments of
large-scale systems.
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Fig. 4 Software reliability engineering risk analysis.

A. Criteria for Safety
In safety critical systems, in particular, safety criteria are used, in conjunction with risk factors, to assess whether

a system is safe to operate. Two criteria are used. One is based on predicted remaining failures in relation to a
threshold and the second is based on predicted time to next failure in relation to mission duration [8]. These criteria
are computed as follows:

compute predicted remaining failures r(tt ) < rc, where rc is a specified remaining failures critical value, and compute
predicted time to next failure TF (tt ) > tm, where tm is mission duration.

Once r(tt ) has been predicted, the risk criterion metric (RCM) for remaining failures at total test time tt is computed
in Eq. (22) as follows:

RCM r(tt ) = r(tt ) − rc

rc

= r(tt )

rc

− 1 (22)

In order to illustrate the remaining failure risk criterion in relation to the predicted maximum number of failures in
the software F(∞), the following parameter is needed:
p(t): Fraction of remaining failures predicted at time tt in Eq. (23) as follows:

p(tt ) = r(tt )

F (∞)
(23)

The RCM for time to next failure at total test time tt is computed in Eq. (24) based on the predicted time to next
failure in Eq. (25) [7] as follows:

RCM TF (tt ) = tm − TF (tt )

tm
= 1 − TF (tt )

tm
(24)

TF (tt ) = − 1

β
log

[
1 − ((F (tt ) + Xs−1))

(
β

α

)]
+ (s − 1) for (F (tt ) + Xs−1)

(
β

α

)
< 1 (25)

where β and α are parameters estimated from the failure data. Parameter β is the rate of change of the failure rate
and α is the initial failure rate. The parameter s is the starting failure interval count that produces the most accurate
reliability predictions, and Xs−1 is the observed failure count in the range of the test data from s to tt . Finally, F(tt )

refers to the specified number of failures—usually one—that is used in the prediction.

Problem:
Part 1 (remaining failures risk):

Using one of the models in [1] recommended for initial use and either the software reliability tool statistical
modeling and estimation of reliabiltiy functions for software (SMERFS) or CASRE, compute Eqs. (22) and (23)
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Fig. 5 Predicted remaining failures r(tt) and risk criterion metric RCM r(tt) vs test time tt for NASA Space Shuttle
Release OI6.

to produce Figs. 5 and 6 for the NASA Space Shuttle software release OI6. The failure counts for each value of
test time tt for OI6 is shown in Table 1. Once you have inputted a text file of these counts, one at a time, the
software reliability tools will compute r(tt ) and F(∞) for each of the ten cases. The tools can be downloaded at
http://www.slingcode.com/smerfs/ for SMERFS and at http://www.openchannelfoundation.org/projects/CASRE 3.0
for CASRE.

Fig. 6 Cost of testing tt vs software quality p(tt) for NASA Space Shuttle Release OI6.
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Table 1 Failure counts for NASA space shuttle soft-
ware release OI6

tt

5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
1 1

1

Part 2 (time to next failure risk): In this part, a specific recommended model in [1] is used [8] in order to illustrate
the use of this model’s predicted time to next failure and the application of the prediction to evaluating the risk of not
satisfying the mission duration requirement, as formulated in Eq. (24). Other recommended models could be used
to perform the analysis.

After using one of the tools to estimate the parameters in Eq. (24), predict TF (tt ) for one more failure and plot it
and the RCM, in Fig. 7, as a function of the test time tt in Table 1.

Fig. 7 Predicted time to next failure TF (tt) and risk criterion metric RCM TF (tt) vs test time.
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Solution to Part 1 :
Figure 5 delineates the test time equal to 5, where the risk of exceeding the critical value of remaining failures

is unacceptable. Therefore, a test time of at least 6 is required. Figure 6 shows how the software reliability analyst
can do a tradeoff of the cost of testing version the quality of software produced by testing. Since test time is usually
directly related to cost, the figure indicates that a very high cost would be incurred for attempting to achieve almost
fault-free software. Therefore, tolerating a fraction remaining failures of about 0.0600 would be practical.

Solution to Part 2 :
Switching now to the evaluation of risk with respect to time to next failure, Fig. 7 demonstrates that unless the

test time is greater than 12, the time to failure will not exceed the mission duration. The engineer using such a plot
would use a mission duration appropriate for the software being tested. The concept behind Fig. 7 is that the software
should be tested sufficiently long such that the RCM goes negative.

VIII. Parameter Analysis
It is possible to assess risk after the parameters α and β have been estimated by a tool, such as SMERFS and

CASRE [1], but before predictions are made. An example is provided in Fig. 8 where remaining failures and its risk
criterion, are plotted against the parameter ratio β/α [7]. The reason for this result is that a high value of β means
that the failure rate decreases rapidly, coupled with a low value of α, leads to high reliability. High reliability, in turn
means low risk of unsafe software. Furthermore, increasing values of PR are associated with increasing values of
test time, thus decreasing risk. Thus, even before predictions are made, it is possible to know how much test time is
required to yield predictions that the software is safe to deploy. In Fig. 8, this time is 6 corresponding to the same
result in Fig. 7. A cautionary note is that the foregoing analysis is an a priori assessment of likely risk results and
does not mean, necessarily, that high values of β/α will lead to low risk.

Problem:
After obtaining estimates of β and α using one of the reliability tools, for each value of test time in Table 1, plot

Fig. 8 to show that risk decreases with the parameter ratio.

Fig. 8 Risk criterion metric RCM r(tt) and remaining failures r(tt) vs parameter ratio PR (β/α) for NASA Space
Shuttle software release OI6.
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IX. Overview of Recommended Software Reliability Models
In [1] it is stated that there are “initial models” recommended for using on an application, but if these models do

not satisfy the organization’s need, other models that are described in the document could be used. Since this tutorial
has included several practice problems, based in part on models, an overview is presented of two of the initially
recommended models: Musa-Okumoto and Schneidewind. The third model — Generalized exponential — involves
a great amount of detail that cannot be presented here. For readers interested in more detail on these models or to
learn about the other models, the recommended practice can be consulted.

A. Musa-Okumoto Logarithmic Poisson Execution Time Model
Objectives

The logarithmic Poisson model is applicable when the testing is done according to an operational profile that has
variations in frequency of application functions and when early fault corrections have a greater effect on the failure
rate than later ones. Thus, the failure rate has a decreasing slope. The operational profile is a set of functions and
their probabilities of use [9].

Assumptions
The assumptions for this model are as follows:

1) The software is operated in a similar manner as the anticipated operational usage
2) Failures are independent of each other
3) The failure rate decreases exponentially with execution time

Structure
From the model assumptions, we have:

λ(t) = failure rate after t amount of execution time has been expended λ0e
−θμ(t)

The parameter λ0 is the initial failure rate parameter and θ is the failure rate decay parameter with θ > 0.
Using a reparameterization of β0 = θ−1 and β1 = λ0θ , then the estimates of β0 and β1 are made, as shown in,

according to Eq. (26) and (27), respectively, as follows:

β̂0 = n

ln(1 + β̂1)tn
(26)

1

β̂1

n∑
i=1

1

1 + β̂1ti
= ntn

(1 + β̂1ti) ln(1 + β̂1ti)
(27)

Here, tn is the cumulative CPU time from the start of the program to the current time. During this period, n failures
have been observed. Once estimates are made for β0 and β1, the estimates for θ and λ0 are made in Eq. (28) and (29)
as follows:

θ̂ = 1

n
ln(1 + β̂1tn) (28)

λ̂0 = β̂0β̂1. (29)

Limitation
The failure rate may rise as modifications are made to the software violating the assumption of decreasing failure

rate.

Data Requirements
The required data is either as follows:
1) The time between failures, represented by Xi’s.

The time of the failure nth occurrences, given by tn = ∑n
i=1 Xi .
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Applications
The major applications are described below. These are separate but related applications that, in total, comprise an

integrated reliability program.
Prediction: Predicting future failure times and fault corrections
Control: Comparing prediction results with predefined goals and flagging software that fails to meet goals.
Assessment: Determining what action to take for software that fails to meet goals (e.g., intensify inspection,
intensify testing, redesign software, and revise process). The formulation of test strategies is also a part of
assessment. It involves the determination of priority, duration and completion date of testing, and allocation of
personnel, and computer resources to testing.

Reliability predictions
In [4], it is shown that from the assumptions above and the fact that the derivative of the mean value function of

failure count is the failure rate function, Eq. (30) is obtained as follows:

μ̂(τ ) = mean number of failures experienced by time τ is expended = 1

θ̂
ln(λ̂0θ̂ τ + 1) (30)

Implementation and application status
The model has been implemented by the Naval Surface Warfare Center, Dahlgren, VA as part of SMERFS and in

CASRE.

B. Schneidewind Model [8]
Objectives

The objectives of this model are to predict following software reliability metrics:
1) F(t1, t2) is the predicted failure count in the range [t1, t2]
2) F(∞) is the predicted failure count in the range [1, ∞]; maximum failures over the life of the software
3) F(t) is the predicted failure count in the range [1, t]
4) p(t) is the fraction of remaining failures predicted at time t

5) Q(t) is the operational quality predicted at time t ; the complement of p(t); the degree to which software is
free of remaining faults (failures)

6) r(tt ) is the remaining failures predicted at test time tt
7) tt is the test time predicted for given r(tt )

8) TF (tt ) is the time to next failure predicted at test time tt

Parameters used in the predictions
1) α is the initial failure rate
2) β is the rate of change of failure rate
3) rc is the critical value of remaining failures used in computing the RCM for remaining failures RCM r(tt )

4) tm is the mission duration (end time-start time) used in computing the RCM for time to next failure RCM
TF (tt )

The philosophy of this model is that as testing proceeds with time, the failure detection process changes. Further-
more, recent failure counts are usually of more use than earlier counts in predicting the future. Three approaches can
be employed in utilizing the failure count data (i.e., number of failures detected per unit of time). Suppose there are
t intervals of testing and fi failures were detected in the ith interval, one of the following is done:

1) Use all of the failures for the t intervals
2) Ignore the failure counts completely from the first s − 1 time intervals (1 � s � t) and only use the data

from intervals s through t

3) Use the cumulative failure count from intervals 1 through s − 1: Fs−1 = ∑s−1
i=1 fi

The first approach should be used when it is determined that the failure counts from all of the intervals are useful
in predicting future counts. This would be the case with new software where little is known about its failure count
distribution. The second approach should be used when it is determined that a significant change in the failure
detection process has occurred and thus only the last t − s + 1 intervals are useful in future failure forecasts. The last
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approach is an intermediate one between the other two. Here, the combined failure counts from the first s − 1 intervals
and the individual counts from the remaining intervals are representative of the failure and detection behavior for
future predictions. This approach is used when the first s − 1 interval failure counts are not as significant as in the
first approach, but are sufficiently important not tp be discarded, as in the second approach.

Assumptions
1) The number of failures detected in one interval is independent of the failure count in another. Note: in practice,

this assumption has not proved to be a factor in obtaining prediction accuracy
2) Only new failures are counted
3) The fault correction rate is proportional to the number of faults to be corrected
4) The software is tested in a manner similar to the anticipated operational usage
5) The mean number of detected failures decreases from one interval to the next
6) The rate of failure detection is proportional to the number of failures within the program at the time of test.

The failure detection process is assumed to be a nonhomogeneous Poisson process with an exponentially
decreasing failure detection rate [7]. The rate is of the form f (t) = αe−β(t−s+1) for the t th interval where
α > 0 and β > 0 are the parameters of the model

Structure
The method of maximum likelihood (MLE) is used to estimate parameters. This method is based on the concept of

maximizing the probability that the true values of the parameters are observed in the failure data [9]. Two parameters
are used in the model that have been previously defined as follows: α and β. In these estimates, t is the last observed
failure count interval; s is the starting interval for using observed failure data in parameter estimation; Xk is the
number of observed failures in interval k; Xs−1 is the number of failures observed from 1 through s − 1 intervals;
Xs,t is the number of observed failures from interval s through t ; and Xt = Xs−1 + Xs,t . The likelihood function
(based on MLE) is then developed as as follows:

log L = Xt

[
log Xt − 1 − log(1 − e−βt )

] + Xs−1
[
log

(
1 − e−β(s−1)

)]

+ Xs,t

[
log

(
1 − e−β

)] − β

t−s∑
k=0

(s + k − 1)Xs+k (31)

Equation (31) is used to derive the equations for estimating α and β for each of the three approaches described
earlier. The parameter estimates can be obtained by using the SMERFS or CASRE tools.

Approach 1:
Use all of the failure counts from interval 1 through t (i.e., s = 1). Equations (32) and (33) are used to estimate

β and α, respectively.

1

eβ − 1
− t

eβt − 1
=

t−1∑
k=0

k
Xk+1

Xt

(32)

α = βXt

1 − e−βt
(33)

Approach 2:
Use failure counts only in intervals s through t (i.e., 1 � s � t). Equations (34) and (35) are used to estimate β

and α, respectively. (Note that Approach 2 is equivalent to Approach 1 for s = 1.)

1

eβ − 1
− t − s + 1

eβ(t−s+1) − 1
=

t−s∑
k=0

k
Xk+s

Xs,t

(34)

α = βXs,t

1 − e−β(t−s+1)
(35)
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Approach 3:
Use cumulative failure counts in intervals 1 through s − 1 and individual failure counts in intervals s through t

(i.e., 2 � s � t). This approach is intermediate to approach 1 which uses all of the data and Approach 2 that discards
“old” data. Equations (36) and (37) are used to estimate β and α, respectively. (Note that Approach 3 is equivalent
to Approach 1 for s = 2.)

(S − 1)Xs−1

eβ(s−1) − 1
+ Xs,t

eβ − 1
− tXt

eβm − 1
=

t−s∑
k=0

(s + k − 1)Xs+k (36)

α = βXt

1 − e−βt
(37)

Limitations
1) Model does not account for the possibility that failures in different intervals may be related
2) Model does not account for repetition of failures
3) Model does not account for the possibility that failures can increase over time as the result of software

modifications
These limitations should be ameliorated by configuring the software into versions that, starting with the second

version, the next version represents the previous version plus modifications introduced by the next version. Each
version represents a different module for reliability prediction purposes. The model is used to predict reliability for
each module. Then, the software system reliability is predicted by considering the N modules to be connected in
series (i.e., worst case situation), and computing the MTTF for N modules in series [10].

Data requirements
The only data requirements are the number of failures, fi , where i = 1, . . . , t , per testing interval. A reliability

database should be created for several reasons: input data sets will be rerun, if necessary, to produce multiple
predictions rather than relying on a single prediction; reliability predictions and assessments could be made for
various projects; and predicted reliability could be compared with actual reliability for these projects. This database
will allow the model user to perform several useful analyses: to see how well the model is performing; to compare
reliability across projects to see whether there are development factors that contribute to reliability; and to see whether
reliability is improving over time for a given project or across projects.

Applications
The major model applications are described below. These are separate but related uses of the model that, in total,

comprise an integrated reliability program.
Prediction: Predicting future reliability metrics such as remaining failures and time to next failure
Control: Comparing prediction results with predefined reliability goals and flagging software that fails to meet
those goals
Assessment: Determining what action to take for software that fails to meet goals (e.g., intensify inspection,
intensify testing, redesign software, and revise process). The formulation of test strategies is also part of
assessment. Test strategy formulation involves the determination of: priority, duration and completion date of
testing, allocation of personnel, and allocation of computer resources to testing.
Risk analysis: Compute risk criterion metrics for remaining failures and time to next failure.

Predict test time required to achieve a specified number of remaining failures at tt , r(tt ) in Eq. (38) as follows:

tt = [log[α/β[r(tt )]]]/β (38)

Implementation and application status
The model has been implemented in FORTRAN and C++ by the Naval Surface Warfare Center, Dahlgren, VA

as part of the SMERFS. In addition, it has been implemented in CASRE. It can be run on an IBM PCs under all
Windows operating systems.

Known applications of this model are as follows:
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1) IBM, Houston, TX: Reliability prediction and assessment of the onboard NASA Space Shuttle software
2) Naval Surface Warfare Center, Dahlgren, VA: Research in reliability prediction and analysis of the TRIDENT

I and II Fire Control Software
3) Marine Corps Tactical Systems Support Activity, Camp Pendleton, CA: Development of distributed system

reliability models
4) NASA JPL, Pasadena, CA: Experiments with multimodel software reliability approach
5) NASA Goddard Space Flight Center, Greenbelt, MD: Development of fault correction prediction models
6) NASA Goddard Space Flight Center
7) Hughes Aircraft Co., Fullerton, CA: Integrated, multimodel approach to reliability prediction

X. Summary
The purpose of this tutorial has been two-fold: 1) serve as a companion to the IEEE/AIAA Recommended

Practice on Software Reliability and 2) assist the engineer in understanding and applying the principles of hardware
and software reliability, and the related subjects of maintainability and availability. Due to the prevalence of software-
based systems, the focus has been on learning how to produce high reliability software. However, since hardware
faults and failures can cause the highest quality software to fail to meet user expectations, considerable coverage
of hardware reliability was provided. Practice problems with solutions were included to provide the reader with
real-world applications of the principles that were discussed.
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